1,041 research outputs found

    Modeling and Analysis of Scholar Mobility on Scientific Landscape

    Full text link
    Scientific literature till date can be thought of as a partially revealed landscape, where scholars continue to unveil hidden knowledge by exploring novel research topics. How do scholars explore the scientific landscape , i.e., choose research topics to work on? We propose an agent-based model of topic mobility behavior where scholars migrate across research topics on the space of science following different strategies, seeking different utilities. We use this model to study whether strategies widely used in current scientific community can provide a balance between individual scientific success and the efficiency and diversity of the whole academic society. Through extensive simulations, we provide insights into the roles of different strategies, such as choosing topics according to research potential or the popularity. Our model provides a conceptual framework and a computational approach to analyze scholars' behavior and its impact on scientific production. We also discuss how such an agent-based modeling approach can be integrated with big real-world scholarly data.Comment: To appear in BigScholar, WWW 201

    3,5-Dinitro­pyridin-4(1H)-one monohydrate

    Get PDF
    The three independent organic mol­ecules of 3,5-dinitro­pyridin-4(1H)-one monohydrate, C5H3N3O5·H2O, each feature an N—H⋯Owater hydrogen bond. Each water mol­ecule serves as hydrogen-bond donor to two carbonyl O atoms; these hydrogen bonds give rise to a layer motif. Two of the three formula units lie on special positions of site symmetry 2

    Attenuating effect of pretreatment with Yiqifumai on lipopolysaccharide-induced intestine injury and survival rate in rat

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Yiqifumai is a traditional Chinese medicine compound preparation used for treatment of microcirculatory disturbance-related diseases in China. We have previous reported that pretreatment with Yiqifumai could improve the lipopolysaccharide (LPS) -induced microcirculatory disturbance in rat mesentery. The present study intended to investigate the effect of pretreatment with Yiqifumai on intestine injury and survival rate of the rats subjected to LPS challenge.</p> <p>Methods</p> <p>Male Wistar rats were continuously infused with LPS (5 mg kg<sup>-1 </sup>body weight h<sup>-1</sup>) via the left jugular vein for 90 min. In some rats, Yiqifumai 80 (mg/kg) was administrated through the left jugular vein 10 min before LPS infusion. The mean arterial pressure (MAP), heart rate (HR), rectal temperature (RT), respiratory rate (RR) and survival rate were measured at 24 h, 48 h and 72 h after LPS infusion. At 72 h after exposure to LPS, the intestine morphology was observed under a stereomicroscope and the immunohistochemistry staining of intestine was conducted to evaluate the expression of intercellular adhesion molecule 1 (ICAM-1) and the number of myeloperoxidase (MPO) positive cells in tissue. After observation of intestine microcirculation, blood was collected from the abdominal aorta of each animal to analyze the level of inflammatory markers in plasma, including TNF-α and MCP-1.</p> <p>Results</p> <p>Compared to the control, LPS infusion significantly decreased MAP and the survival rate and increased the HR, RT and RR, as well as elicited leukocyte infiltration, intestine hemorrhage, enhanced expression of ICAM-1 and raised level of inflammatory markers. All of indicators, except for the RT, were significantly attenuated by Yiqifumai, in contrast to the LPS group.</p> <p>Conclusions</p> <p>The results demonstrated the potential of pretreatment with Yiqifumai to ameliorate rat intestine injury, inflammatory response to LPS and the decrease in survival rate caused by LPS challenge.</p

    PITX2C loss-of-function mutations responsible for idiopathic atrial fibrillation

    Get PDF
    OBJECTIVE: This study aimed to identify novel PITX2c mutations responsible for idiopathic atrial fibrillation. METHODS: A cohort of 210 unrelated patients with idiopathic atrial fibrillation and 200 unrelated, ethnically matched healthy individuals used as controls were recruited. The whole coding exons and splice junctions of the PITX2c gene, which encodes a paired-like homeobox transcription factor required for normal cardiovascular morphogenesis, were sequenced in 210 patients and 200 control subjects. The causative potentials of the identified mutations were automatically predicted by MutationTaster and PolyPhen-2. The functional characteristics of the PITX2c mutations were explored using a dual-luciferase reporter assay system. RESULTS: Two novel heterozygous PITX2c mutations (p.Q105L and p.R122C) were identified in 2 of the 210 unrelated patients with idiopathic atrial fibrillation. These missense mutations were absent in the 400 control chromosomes and were both predicted to be pathogenic. Multiple alignments of PITX2c protein sequences across various species showed that the altered amino acids were highly evolutionarily conserved. A functional analysis demonstrated that the mutant PITX2c proteins were both associated with significantly reduced transcriptional activity compared with their wild-type counterparts. CONCLUSION: The findings of this study associate PITX2c loss-of-function mutations with atrial fibrillation, supporting the hypothesis that dysfunctional PITX2c confers enhanced susceptibility to atrial fibrillation and suggesting potential implications for early prophylaxis and allele-specific therapy for this common arrhythmia

    Major histocompatibility complex genomic investigation of endangered Chinese alligator provides insights into the evolution of tetrapod major histocompatibility complex and survival of critically bottlenecked species

    Get PDF
    BackgroundThe major histocompatibility complex (MHC) gene family, a vital immune gene family in vertebrates, helps animals defend against pathogens. The polymorphism of MHC genes is important for a species and is considered to be caused by the numerous alleles of MHC antigen-presenting genes. However, the mechanism of this process is unclear due to the lack of data on the MHC structure. The evolutionary trajectories of the tetrapod MHC are also unclear because of insufficient studies on the reptile MHC architecture. Here, we studied the Chinese alligator (Alligator sinensis), which experienced a population bottleneck, but the population increased rapidly in the past 30 years and is proposed to have a unique MHC system to face pathogenic challenges.ResultsWe successfully constructed a 2 Mb MHC region using bacterial artificial chromosome (BAC) library and genome data of the Chinese alligator and checked the antigen-presenting genes using transcriptome data and the rapid amplification of cDNA ends (RACE) technique. The MHC architecture reported here uncovers adjacent Class I and Class II subregions and a unique CD1 subregion. This newly added information suggested that the Class I-II structure pattern was more ancient in tetrapods and helped reconstruct the evolution of the MHC region architecture. We also found multiple groups of MHC class I (MHC-I) (12 duplicated loci, belonging to three groups, two of which were novel) and MHC class II (MHC-II) (11 duplicated loci, belonging to two groups) inside the 2 Mb MHC region, and there were three more duplicated MHC-I loci outside it. These highly duplicated antigen-presenting loci had differences in expression, amino acid length of antigen-presenting exons, and splice signal of exon and intron, which together promoted the polymorphism of duplicated genes. Although the MHC antigen-presenting genes were identified as monomorphic or oligomorphic in our previous population study, the loci with high copy numbers and many differences can make up for this loss, presenting another mechanism for polymorphism in antigen presentation. These MHC-I and MHC-IIB loci with low polymorphism for each locus, but high numbers in all, may also contribute to MHC antigen-presenting binding variability in a population.ConclusionTo summarize, the fine MHC region architecture of reptiles presented in this study completes the evolutionary trajectories of the MHC structure in tetrapods, and these distinctive MHC gene groups in the Chinese alligator may have helped this species to expand rapidly in the past recent years
    corecore